Images and Logic of the Light Cone: Tracking Robb’s Postulational Turn in Physical Geometry

Authors

  • Jordi Cat Department of History and Philosophy of Science, Indiana University

DOI:

https://doi.org/10.22370/rhv2016iss8pp43-105

Keywords:

Robb, axiomatics, postulates, postulationism, light cone, relativity theory, geometry, foundations of mathematics, space-time, model, logical model, Russell, Hilbert, Veblen, Huntington, Peano, Minkowski, Cambridge, Göttingen

Abstract

Previous discussions of Robb’s work on space and time have offered a philosophical focus on causal interpretations of relativity theory or a historical focus on his use of non-Euclidean geometry, or else ignored altogether in discussions of relativity at Cambridge. In this paper I focus on how Robb’s work made contact with those same foundational developments in mathematics and with their applications. This contact with applications of new mathematical logic at Göttingen and Cambridge explains the transition from his electron research to his treatment of relativity in 1911 and finally to the axiomatic presentation in 1914 in terms of postulates. At the heart of Robb’s physical optics was the model of the light cone. The model underwent a transition from a working mechanical model in the Maxwellian Cambridge sense of a pedagogical and research tool to the semantic model, in the logical, model-theoretic sense. Robb tracked this transition from the 19th- to the 20th-century conception with the earliest use of the term ‘model’ in the new sense. I place his cone models in a genealogy of similar models and use their evolution to track how Robb’s physical researches were informed by his interest in geometry, logic and the foundations of mathematics.

 

Author Biography

Jordi Cat, Department of History and Philosophy of Science, Indiana University

Jordi Cat received a M.A. from Stanford University, and a Ph.D. from the University of California at Davis in 1995. He has held postdoctoral positions at Harvard University, the Max Planck Institute for History of Science in Berlin, The London School of Economics and the University of Chicago.
His research interests are in all three areas, philosophy of science, history of science and history of philosophy of science, and in their intersections (philosophy of history next): In particular, issues of unity and pluralism, the application of mathematics, precision and approximation, scientific planning, modeling, causality, visual and material culture and 19th & 20th-century history of physics and philosophy of science (Victorian physics and philosophy of science, especially Maxwell, and Logical Empiricism, especially Neurath).
He has published numerous articles in the history and philosophy of science and history of philosophy of science, and is the author of Fuzzy Pictures as Philosophical Problem and Scientific Practice (Springer 2016), Maxwell, Sutton and the Birth of Color Photography (Palgrave-Macmilan 2013) and co-author of Otto Neurath: Philosophy between Science and Philosophy (Cambridge Univ. Press 1995) with Nancy Cartwright, Lola Fleck and Thomas Uebel.
He co-founded the IU 19th-Century Forum and is a Fellow of the Center for Integrative Photographic Studies. He is currently completing, inter alia, three books, on pluralism and mechanistic and functional explanation, on Polanyi and Neurath on animation, and on the reception of relativity theory and the relation between mathematics, physics and philosophy of science at Indiana University in the early 20th century.
Recent articles include ''The performative construction of natural kinds: mathematical application as practice' (in C. Kendig, ed., Natural Kinds and Classification in Scientific Practice, Routledge 2016) and 'Images and logic of the light cone: Tracking Robb's postulational turn in physical geometry' (Revista de Humanidades de Valparaíso 2016).

References

Barrow-Green, J. & Gray, J.J. (2006). ‘Geometry at Cambridge, 1863-1940’, Historia Mathematica 33, 315-356.

Campbell, N.R. (1910a). ‘The principles of dynamics’, Philosophical Magazine Ser. 6, 19, 168-81.

Campbell, N.R. (1911a). ‘The common sense of relativity’, Philosophical Magazine Ser. 6, 21, 502-517.

Campbell, N.R. (1919). Physics. The Elements, Cambridge: Cambridge University Press.

Carmichael, R.D. (1912). ‘On the theory of relativity: Analysis of the postulates’, Physical Review 35, n.3, 153-176.

Carmichael, R.D. (1913). The Theory of Relativity, New York: John Wiley & Sons.

Cat, J. (2001). ‘On understanding: Maxwell on the methods of illustration and scientific metaphor’, Studies in the History and Philosophy of Modern Physics 33B, n.3, 395-442.

Cat, J. (2016). Intellectual Trajectories and Local Interactions: Carmichael and Davis from Mathematics to Relativity and Philosophy at Indiana University in the 1910s and 20s, Indiana University ms.

Corcoran, J. (1980). ‘On definitional equivalence and related topics’, History and Philosophy of Logic 1, 231-4.

Corry, L. (1997). ‘Hermann Minkowski and the postulate of relativity’, Archive for History of Exact Sciences 51, n.4, 273-314.

Corry, L. (2004). David Hilbert and the Axiomatization of Physics (1898-1918), Dordrecht: Kluwer.

Cunningham, E.C. (1914). ‘Letter to the editor: The Principle of Relativity’, Nature 92, 2331, 454.

Darrigol, O. (2000). Electrodynamics from Ampère to Einstein, Chicago: University of Chicago Press.

Darrigol, O. (2014). Physics and Necessity, Oxford: Oxford University Press.

DiSalle, R. (1993). ‘Helmholtz’s empiricist philosophy of mathematics: Between laws of perception and laws of nature’, in D. Cahan, ed., Hermann von Helmholtz and the Foundations of Nineteenth-Century Science, Berkeley: University of California Press, 498-521.

Ferreirós, J. (2006). ‘Riemann’s Habilitationsvortrag at the Crossroads at Mathematics, Physics and Philosophy’, in J. Ferreirós and J.J. Gray, eds., The Architecture of Modern Mathematics: Essays in History and Philosophy, Oxford: Oxford University Press, 67-96.

Galison, P.L. (1979). ‘Minkowski’s space-time: from visual thinking to the absolute world’, Historical Studies in the Physical Sciences 10, 85-121.

Goldberg, S. (1984). Understanding Relativity: Origin and Impact of a Scientific Revolution, Boston: Birkhäuser.

Hilbert, D. (1899). Grundlagen der Geometrie, Leipzig: Teubner.

Hobson, E.W. & Love, A.E.H. (eds.) (1913). Proceedings of the Fifth International Congress of Mathematicians, 2 vols., Cambridge: Cambridge University Press.

Hunt, B.J. (1991). The Maxwellians, Ithaca, NY: Cornell University Press.

Huntington, E.V. (1902). ‘A complete set of postulates for the theory of absolute continuous magnitude’, Transactions of the American Mathematical Society 3, n.2, 264-79.

Huntington, E.V. (1911). ‘The fundamental propositions of algebra’, in J.W.A. Young, ed., Monographs on the Topics of Modern Mathematics, New York: Longmans, Green and Co., 151-210.

Huntington, E.V. (1912). ‘A new approach to the theory of relativity’, Philosophical Magazine 23, n.136, 494-513.

Kox, A.J. (1997). ‘The discovery of the electron: II. The Zeeman effect’, European Journal of Physics 18, 139-44.

Larmor, J. (1900). Aether and Matter, Cambridge: Cambridge University Press.

Laub, J. (1910). ‘Über die experimentellen Grundlagen des Relativitätsprinzips’, Jahrbuch der Radioaktivität und Elektronik 7, 405-463.

von Laue, M. (1911). Das Relativitätsprinzip, Braunschweig: Vieweg.

Lennes, N.J. (1911). ‘Review: Edward V. Huntington, The Fundamental Laws of Addition and Multiplication in Elementary Algebra’, Bulletin of the American Mathematical Society 17, n.7, 362-5.

Lewis, G.N. & Tolman, R.C. (1909). ‘The Principle of Relativity, and non-Newtonian mechanics’, Proceedings of the American Academy of Arts and Sciences 44, n. 25, 711-24.

Lorentz, H.A. (1916). The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat, Leipzig: B.G. Teubner.

Mancosu, P. (2003). ‘The Russellian influence on Hilbert and his school’, Synthese 137, 59-101.

Miller, A.I. (1981). Albert Einstein’s Special Theory of Relativit: emergence (1905) and Early Interpretation (1905-1911), New York: Springer.

Minkowski, H. (1909/1911). ‘Raum und Zeit’, Physikalische Zeitschrift 10, 104-111, in Gesammelte Abhandlungen, ed. D. Hilbert, 1911, vol. 2, 431-444.

Minkowski, H. (1915). ‘Das Relativitätsprinzip’, Annalen der Physik 47, 927-38.

Moore, E.H. (1902). ‘On the projective axioms of geometry’, Transactions of the American Mathematical Society 3, 142-158.

von Neumann, J. (1925). ‘Eine Axiomatisierung der Mengenlehre’, Journal für die reine und angewandte Mathematik 22, 219-40.

Padoa, A. (1904). ‘Un nuovo sistema di definizioni par la geometria euclidea’, Periodico di Matematische 1, 74-80.

Peano, G. (1889). I Principii di Geometria Logicamente Esposti, Torino: Fratelli Bocca Editori.

Peano, G. (1894). ‘Sui fondamenti della geometria’, Rivista di Matematica 4, 51-90.

Poincaré, H. (1902). La Science et l’Hypothèse, Paris: Flammarion.

Pressland, A.J. (1892). ‘On the history and degree of certain geometrical approximation’, Proceedings of the Edinburgh Mathematical Society 10, 27.

Pyenson, L. (1976). ‘Einstein’s early scientific collaboration’, Historical Studies in the Physical Sciences 7, 83-123.

Pyenson, L. (1979). ‘Physics in the shadow of mathematics: The Göttingen electron-theory seminar of 1905’, Archive for History of the Exact Sciences 21, n.1, 55-89.

Robb, A.A. (1904). Beiträge zur Theorie des Zeemaneffektes, Leipzig: Johann Ambrosius Barth.

Robb, A.A. (1905a). ‘On the conduction of electricity through gases between parallel plates. Part I’, Philosophical Magazine Ser. 6, 10, n.56, 237-42.

Robb, A.A. (1905b). ‘On the conduction of electricity through gases between parallel plates. Part II’, Philosophical Magazine Ser. 6, 10, n.60, 664-76.

Robb, A.A. (1906). ‘The revolution of the corpuscle’, Nature 1892, n. 73, 321.

Robb, A.A. (1911). Optical Geometry of Motion. A New View of the Theory of Relativity, Cambridge: W. Heffer and Sons.

Robb, A.A. (1913a). ‘Proof of one of Peano’s axioms of the straight line’, The Messenger of Mathematics 42, 121-3.

Robb, A.A. (1913b). ‘Note on the proof of one of Peano’s axioms of the straight line’, The Messenger of Mathematics 42, 134.

Robb, A.A. (1914a). ‘Letter to the editor: The Principle of Relativity’, Nature 92, 2331, 454.

Robb, A.A. (1914b). A Theory of Time and Space, Cambridge: Cambridge University Press.

Robb, A.A. (1921). The Absolute Relations of Time and Space, Cambridge: Cambridge University Press.

Routh, E.J. (1892). An Advanced Treatise on the Dynamics of Rigid Bodies, 2 vols., Cambridge: Cambridge University Press.

Russell, B. (1899). ‘Sur les axiomes de la géométrie’, Revue de Métaphysique et de Morale 7, 684-707.

Russell, B. (1903). Principles of Mathematics, Cambridge: Cambridge University Press.

Russell, B. (1905a). ‘Review of Henri Poincaré’s Science and Hypothesis’, Mind 14, 412-418.

Russell, B., (1905b). ‘On Denoting’, Mind 56, 479-493.

Russell, B. (1914). ‘The relation of sense-data to physics’, Scientia 16, 1-27.

Sánchez-Ron, J.M. (1987). ‘The reception of Special Relativity in Great Britain’, in T. Glick, ed., The Comparative Reception of Relativity, Dordrecht: Reidel, 27-58.

Scanlan, M. (1991). ‘Who were the American postulate theorists?’, Journal of Symbolic Logic 56, n.3, 981-1002.

Schlimm, D. (2003). ‘Axioms in mathematical practice’, Philosophia Mathematica (III) 21, 37-92.

Sommerfeld, A. (1904). ‘Zur elektronentheorie. II. Grundlagen für eine allgemeine Dynamik des Elektrons’, Nachrichten v.d. Königlichen Gesellschaft der Wissenschaften z. Göttingen 1904, n.1, 363-439.

Sommerfeld, A. (1905). Zur Elektronentheorie. III. Ueber Lichtgeschwindigkeits- und Ueberlichtgeschwindigkeits-Elektronen’, Nachrichten v.d. Königlichen Gesellschaft der Wissenschaften z. Göttingen 1905, n.3, 201-235.

Sommerfeld, A. (1910a). ‘Zur Relativitätstheorie. I. Vierdimensionale Vektoralgebra’, Annalen der Physik 337, n. 9, 749-76.

Sommerfeld, A. (1910b). ‘Zur Relativitätstheorie. I. Vierdimensionale Vektoranalysis’, Annalen der Physik 338, n.14, 649-689.

Tarski, A. (1936/1956). ‘On the concept of logical consequence’, Logic, Semantics, Metamathematics, Oxford: Clarendon Press, 409-20.

Tarski, A. (1936/1986). ‘Über den Begriff der logischen Folgerung’, in S.R. Givant and R.N. McKenzie, eds., Alfred Tarski. Collected Papers, vol. 2, 1935-1944, Boston: Birkhäuser, 269-82.

Thomson, J.J. (ed.) (1910). A History of the Cavendish Laboratory 1870-1910, Cambridge: Cambridge University Press.

Tolman, R.C. (1910). ‘The second postulate of relativity’, Physical Review Ser. 1, 31, n.1, 26-40.

Torretti, R. (1978). Philosophy of Geometry from Riemann to Poincaré, Dordrecht: Reidel.

Torretti, R. (1983/1996). Relativity and Geometry, New York: Dover.

Veblen, O. (1903). ‘Hilbert’s foundations of geometry’, The Monist 13, n.2, 303-9.

Veblen, O. (1904). ‘A system of axioms for geometry’, Transactions of the American Mathematical Society 5, n.3, 343-384.

Veblen, O. (1911). ‘The foundations of geometry’, in J.W.A. Young, ed., Monographs on the Topics of Modern Mathematics, New York: Longmans, Green and Co., 3-54.

Veblen, O. & Young, J.W.A. (1910). Projective Geometry, 2 vols., Boston: Ginn and Co.

Voigt, W. (1887). ‘Ueber das Doppler’sche Princip,’ Nachrichten v.d. Königlichen Gesellschaft der Wissenschaften u.d. Georg-August-Universität z. Göttingen 1887, n.2, 41-51.

Voigt, W. (1896). Kompendium der theoretische Physik, 2 vols., Leipzig: Verlag von Veit & Comp.

Voigt, W. (1899). ‘Weiters zur Theorie der Zeemaneffectes’, Annalen der Physik 68, 352-364.

Voigt, W. (1901). Elementare Mechanik, Leipzig: Verlag von Veit & Comp.

Voigt, W. (1908). Magneto- und Elektrooptik Leipzig: B.G. Teubner.

Walter, S. (1999). ‘The non-Euclidean style of Minkowskian relativity’, in J.J. Gray, ed., 1999, The Symbolic Universe, Oxford: Oxford University Press, 99-127.

Warwick, A.C. (2003). Masters of Theory: Cambridge and the Rise of Mathematical Physics, Chicago: University of Chicago Press.

Whitehead, A.N. (1906). The Axioms of Projective Geometry, Cambridge: Cambridge University Press.

Whitehead, A.N. (1907). The Axioms of Descriptive Geometry, Cambridge: Cambridge University Press.

Whitehead, A.N. & Russell, B. (1910-1913). Principia Mathematica, 3 vols., Cambridge: Cambridge University Press.

Windred, G. (1933). ‘The history of mathematical time: II’, Isis 20, n.1, 192-219.

Published

2016-12-13

How to Cite

Cat, J. (2016). Images and Logic of the Light Cone: Tracking Robb’s Postulational Turn in Physical Geometry. Revista De Humanidades De Valparaíso, (8), 43–105. https://doi.org/10.22370/rhv2016iss8pp43-105

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.