The Interpretative Problem of Quantum Mechanics. Minimal Interpretation and Total Interpretations Abstract
DOI:
https://doi.org/10.22370/rhv2016iss8pp9-42Keywords:
Quantum theory, theory identity, theory interpretation, models, intended ontologyAbstract
In this paper I contend that standard quantum theory has a minimal interpretation, on which all physicists agree. That interpretation is sufficient for every application of quantum theory and it has been confirmed by a countless number of experiments. However, it provides neither an overall picture of the quantum world nor an intended ontology for quantum theory. For those reasons, several full interpretations have been proposed in order to complete the minimal interpretation. I then argue that those interpretations –which are empirically equivalent, but mutually incompatible- are metaphysical ventures that cannot be confirmed by any conceivable experience. Moreover, I claim that the program of finding the ontology for quantum theory rests on the false assumption that there is a unique ontology compatible with each physical theory. I conclude that there is no direct path either from the formalism of quantum theory to its intended ontology, or from determinate metaphysical assumptions to the quantum formalism.
References
Albert, D. (1992). Quantum Mechanics and Experience. Cambridge, MA: Harvard University Press.
Albert, D. (1996). “Elementary Quantum Metaphysics”. En Cushing, J., Fine, A. & Goldstein, S. (eds.) Bohmian Mechanics and Quantum Theory: An Appraisal. Dordrecht: Kluwer, 1996, pp. 277-284.
Albert, D. (2013). “Wave Function Realism”. En Ney & Albert (eds.) (2013), pp. 52-57.
Allori, V. (2013). “Primitive Ontology and the Structure of Fundamental Physical Theories”. En Ney & Albert (eds.) (2013), pp. 58-75.
Auletta, G., Fortunato, M. & Parisi, G. (2009). Quantum Mechanics. New York: Cambridge University Press.
Auletta, G. & Wang, S. W. (2014). Quantum Mechanics for Thinkers. Singapore: Pan Stanford Publishing.
Bacciagaluppi, G. & Valentini, A. (2009). Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. New York: Cambridge University Press.
Bitbol, M. (1996). Mécanique quantique. Une introduction philosophique. Paris: Flammarion.
Bohm, D. (1951). Quantum Theory. New York: Prentice-Hall. (Reimpreso en New York: Dover, 1989).
Bohm, D. (1952). “A Suggested Interpretation of Quantum Theory in Terms of Hidden Variables”. Physical Review, 85: 166-193.
Bohm, D. (1957). Causality and Chance in Modern Physics. London: Routledge.
Bohm, D. & Hiley, B. (1993). The Undivided Universe: An Ontological Interpretation of Quantum Theory. London: Routledge.
Bub, J. (1999). Interpreting the Quantum World. Revised Edition. Cambridge : Cambridge University Press.
Bub, J. (2007). “Quantum Probabilities as Degrees of Belief”. Studies in History and Philosophy of Modern Physics, 38: 232-254.
Cassini, A. (2016). “La paradoja de Einstein-de Broglie. ¿Incompletitud o superposición de estados?”. Cadernos de História e Filosofia da Ciência. [En prensa].
Cohen-Tannoudji, Diu, B. & Laloë, F. (1977). Quantum Mechanics. New York: Wiley.
Cushing, P. (1998). Philosophical Concepts in Physics: The Historical Relation between Philosophy and Scientific Theories. Cambridge: Cambridge University Press.
Dickson, W. M. (1998). Quantum Chance and Non-Locality: Probability and Non-Locality in the Interpretations of Quantum Mechanics. Cambridge: Cambridge University Press.
Dirac, P. (1967). The Principles of Quantum Mechanics. Fourth Edition. Oxford: Clarendon Press. [1a ed. 1930].
Dürr, D., Goldstein, S. & Zanghi, N. (2013): Quantum Physiscs without Quantum Philosophy. Berlin: Springer.
Dürr, D. & Teufel, S. (2009). Bohmian Mechanics: The Physics and Mathematics of Quantum Theory. Berlin: Springer.
Friedrichs, S. (2015). Interpreting Quantum Theory: A Therapeutic Approach. New York: Palgrave Macmillan.
Fuchs, C. & Peres, A. (2000). “Quantum Theory Needs No ‘Interpretation’”. Physics Today, 53: 70-71.
Ghirardi, G. (2005). Sneaking a Look at God´s Cards: Unraveling the Mysteries of Quantum Mechanics. Princeton: Princeton University Press.
Ghirardi, G. Rimini, A. & Weber, T. (1986). “Unified Dynamics for Microscopic and Macroscopic Systems”. Physical Review, D34: 470-491.
Giere, R. (1988). Explaining Science: A Cognitive Approach. Chicago: The University of Chicago Press.
Gouesbet, G. (2013). Hidden Worlds of Quantum Physics. New York: Dover.
Heisenberg, W. (1958). Physik und Philosophie. München: Piper.
Holland, P. (1993). The Quantum Theory of Motion. Cambridge: Cambridge University Press.
Howard, D. (2004). “Who Invented the ‘Copenhaguen Interpretation’? A Study in Mythology” Philosophy of Science, 71: 669-682.
Isham, C. (1995). Lectures on Quantum Theory: Mathematical and Structural Foundations. London: Imperial College Press.
Jaeger, G. (2009). Entanglement, Information, and the Interpretation of Quantum Mechanics. Berlin: Springer.
Jaeger, G. (2014). Quantum Objects: Non-Local Correlation, Causality, and Objective Indefiniteness in the Quantum World. Berlin: Springer.
Jammer, M. (1974). The Philosophy of Quantum Mechanics: The Interpretations of Quantum Mechanics in Historical Perspective. New York: John Wiley.
Laloë, F. (2012). Do We Really Understand Quantum Mechanics? New York: Cambridge University Press.
Maudlin, T. (2013). “The Nature of the Quantum State”. En Ney & Albert (eds.) (2013), pp. 126-153.
Mermin, D. (2004). “What´s Wrong with this Quantum World”. Physics Today, 57: 10-11.
Mosterín, J. & Torretti, R. (2010). Diccionario de Lógica y Filosofía de la Ciencia. Segunda edición. Madrid: Alianza.
Ney, A. & Albert, D. (eds.) (2013): The Wave Function: Essays on the Metaphysics of Quantum Mechanics. New York: Oxford University Press.
Omnès, R. (1994). The Interpretation of Quantum Mechanics. Princeton: Princeton University Press.
Omnès, R. (1999). Understanding Quantum Mechanics. Princeton: Princeton University Press.
Peres, A. (2002). Quantum Theory: Concepts and Methods. New York: Kluwer.
Petersen, A. (1963). “The Philosophy of Niels Bohr”. Bulletin of the Atomic Scientists, 19: 8-14.
Petersen, A. (1968). Quantum Mechanics and the Philosophical Tradition. Cambridge, MA: The MIT Press.
Quine, W. V. O. (1968). “Ontological Relativity”. The Journal of Philosophy, 65: 185-212.
Quine, W. V. O. (1992). Pursuit of Truth. Revised Edition. Cambridge, MA: Harvard University Press.
Riggs, P. (2009). Quantum Causality: Conceptual Issues in the Causal Theory of Quantum Mechanics. Dordrecht: Springer.
Ruetsche, L. (2011). Interpreting Quantum Theories. New York: Oxford University Press.
Schlosshauer, M. (2007). Decoherence and the Quantum-to-Classical Transition. Berlin: Springer.
Selleri, F. (1994). Le grand débat de la théorie quantique. Paris: Flammarion.
Torretti, R. (1999). The Philosophy of Physics. Cambridge: Cambridge University Press.
Van Fraassen, B. (1991). Quantum Mechanics: An Empiricist Approach. Oxford: Clarendon Press.
Von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.
Weinberg, S. (2013). Lectures on Quantum Mechanics. New York: Cambridge University Press.
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication, with the work after publication simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0 International) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).